(X^2+2x-3)+(x^2+3x-8)=180

Simple and best practice solution for (X^2+2x-3)+(x^2+3x-8)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (X^2+2x-3)+(x^2+3x-8)=180 equation:



(X^2+2X-3)+(X^2+3X-8)=180
We move all terms to the left:
(X^2+2X-3)+(X^2+3X-8)-(180)=0
We get rid of parentheses
X^2+X^2+2X+3X-3-8-180=0
We add all the numbers together, and all the variables
2X^2+5X-191=0
a = 2; b = 5; c = -191;
Δ = b2-4ac
Δ = 52-4·2·(-191)
Δ = 1553
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{1553}}{2*2}=\frac{-5-\sqrt{1553}}{4} $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{1553}}{2*2}=\frac{-5+\sqrt{1553}}{4} $

See similar equations:

| 38=6r-4 | | 8a+11=67 | | -34+7x=-5(5-2x) | | (3x-3)(x-3)=(2x-1)(2x-1)2x | | 2+5x=-4-5x+6x | | 3/5•q=-15 | | 16x+4=3x-4(6-x)+8 | | -3/4w-5/6=9/8w+2/3-7/4w | | 4n+24+5n+30=180 | | x+10-12=13 | | 5+x=8+2(x-4) | | 6(2-n)=5n+12 | | 0.25(2.5+1.5x-6)=x | | 3y-5y-(2y-6)=8y-2(9y-6 | | 4(x+6)+9x=35 | | 8x+4(3x-2)=14-2x | | -16x^2+30x+5.8=0 | | (7y-5)(8y-1)=0 | | -3x+33=-6(x-2) | | 10x-7=4x+1 | | x/7=0.42 | | 3w+15=51-6w | | 2x=8x+14 | | 4x×3x=0 | | -23+3=m-2 | | 4(x+6)+7x=36 | | 9x-9=4x+3 | | -4(x-4)=-8 | | 400−3x=322.75 | | 76q+10=4 | | 35+8x=6(1+2x)+5 | | 76q+4=10 |

Equations solver categories